
F Fermi National Accelerator Laboratory

FERMILAB-Pub-95/330-A

Cosmic Error and Statistics of Large Scale Structure

Istvan Szapudi and Stephane Colombi

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1995

Submitted to Astrophysical Journal

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO3000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.



FERMILAB-Pub-95/330-A

Cosmic Error and

Statistics of Large Scale Structure

Istv�an Szapudi1 and St�ephane Colombi1;2

1NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL
60510-0500

2CITA, 60 St George St., Toronto, ON, Canada, M5S 1A7

Submitted to Astrophysical Journal

Abstract
We use a generating function approach to examine the errors on quantities related to counts in cells

extracted from galaxy surveys.
The measurement error, related to the �nite number of sampling cells, is disentangled from the \cosmic

error", due to the �niteness of the survey. Using the hierarchical model and assuming locally Poisson
behavior, we identi�ed three contributions to the cosmic error:

� The �nite volume e�ect is proportional to the average of the two-point correlation function over the
whole survey. It accounts for possible uctuations of the density �eld at scales larger than the sample
size.

� The edge e�ect is related to the geometry of the survey. It accounts for the fact that objects near the
boundary carry less statistical weight than those further away from it.

� The discreteness e�ect is due to the fact that the underlying smooth random �eld is sampled with
�nite number of objects. This is the \shot noise" error.

To check the validity of our results, we measured the factorial moments of order N � 4 in a large number
of small subsamples randomly extracted from a hierarchical sample realized by Raighley-L�evy random walks.
The measured statistical errors are in excellent agreement with our predictions. The probability distribution
of errors is increasingly skewed when the order N and/or the cell size increases. This suggests that \cosmic
errors" tend to be systematic: it is likely to underestimate the true value of the the factorial moments.

Our study of the various regimes showed that the errors strongly depend on the clustering of the system,
i.e., on the hierarchy of underlying correlations. The Gaussian approximation is valid only in the weakly
non-linear regime, otherwise it severely underestimates the true errors.

We study the concept of \number of statistically independent cells" (re)de�ned as the number of sampling
cells required to have the measurement error of same order as the cosmic error. This number is found
to depend highly on the statistical object under study and is generally quite di�erent from the number
of cells needed to cover the survey volume. In light of these �ndings, we advocate high oversampling for
measurements of counts in cells.

keywords large scale structure of the universe { galaxies: clustering { methods: numerical {
methods: statistical



1. Introduction

The distribution of galaxies is generally admitted to be homogeneous at scales larger than � 150
Mpc. Statistics naturally characterizes this distribution under the assumption that galaxies are a
discrete realization of a continuous random �eld. This underlying smooth �eld is related to the
distribution of luminous matter, thus it might not necessarily represent the total mass contained
in the Universe. The primary purpose of quantifying structure in galaxy catalogs is to measure
the properties of the underlying random �eld. Practically, however, galaxy surveys always cover a
�nite volume of space and contain �nite number of objects. Possible uctuations of the random
�eld at the boundaries of the survey and at scales larger than the survey size, together with
the Poisson uctuations related to the discrete nature of the sample, introduce uncertainties on
the measurements. These e�ects are present in any �nite galaxy catalog, hence the name \cosmic
error". This paper puts forth a quantitative analysis of the situation by calculating the theoretically
expected errors on statistics related to counts in cells.
Any statistic, aiming at extracting the properties of the underlying random �eld, measures

deviations from a homogeneous random distribution, i.e., one without any correlation between
galaxies. The most widely used measures are the two-point correlation function �2, and its fourier
transform the power-spectrum hj�kj

2i (see, e.g., Peebles 1980). Function �2 corresponds to the excess
probability of pairs compared to random. Uncertainties on the measurement of �2 and of hj�kj2i
have been discussed by various authors (e.g., Peebles 1973; Peebles 1980; Landy & Szalay 1992;
Hamilton 1993; Bernstein 1994; Feldman, Kaiser, & Peacock 1994; Colombi, Bouchet & Schae�er
1995, hereafter CBSII) and, as a result, the correlation function has become a well controlled
tool. However, the large degree of inhomogeneity in the galaxy distribution, manifesting in large
voids (e.g., de Lapparent et al. 1986; Kirshner et al. 1987; Geller & Huchra 1989), clusters and
superclusters (e.g., Abell 1958; Bahcall 1988) is not fully described by this statistic, which only
accounts for a Gaussian distribution adequately. To measure non-Gaussian features, higher order
correlation functions, �N , are needed (e.g., Peebles & Groth 1975; Groth & Peebles 1977; Fry &
Peebles 1978; Sharp, Bonometto, & Lucchin 1984). Unfortunately it is di�cult to measure and
interpret the N -point correlation functions, especially when N � 5, mostly because of the large
number of parameters involved. In particular, the expected uncertainties on the measurements are
rather di�cult to estimate.
Alternative to correlation functions, counts in cells estimate the probability of �nding N objects

in a cell of given size thrown at random in the survey. They depend on integrals of the M -point
correlation functions, M � 2, thus characterize, although indirectly, the clustering of galaxies
to greater accuracy than the two-point function. Describing only the scaling of the underlying
distribution with the cell size, they are much simpler to deal with than the N -point correlation
functions. Methods based on counts in cells and related statistics such as moments, and moment
correlators were thus applied to several galaxy catalogs (e.g., Alimi, Blanchard & Schae�er 1990;
Maurogordato, Schae�er & da Costa 1992; Szapudi, Szalay & Bosch�an 1992; Meiksin, Szapudi &
Szalay 1992; Bouchet et al. 1993; Gazta~naga 1994; Szapudi et al. 1995) and N -body simulations
(e.g., Bouchet, Schae�er & Davis 1991; Bouchet & Hernquist 1992; Lucchin et al. 1994; Baugh,
Gazta~naga & Efstathiou 1995; Colombi, Bouchet, & Hernquist 1995). The assessment of the errors
on these measurements is even more delicate than the measurements themselves.
One possible procedure to estimate the errors consists of generating a large number of random

realizations modeling the data set, and measure the dispersion of the measurements experimentally
(see, e.g., Baugh, Gazta~naga & Efstathiou 1995). Such Monte Carlo methods are rather costly,
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since to date the main technique to generate an arti�cial sample with realistic statistics is the costly
N -body simulation. Therefore the number of realizations used for such measurements is severely
limited by the available computer resources. The other option is a full scale analytic calculation.
So far, no real detailed analytic study of the errors on counts in cells has been done, except for
the void probability (CBSII), and to some extent for the second order moment (which is more or
less equivalent to the two-point correlation function, e.g., Efstathiou et al. 1990; CBSII). Our aim
here is thus to deal in detail with the errors on quantities related to counts in cells, especially the
factorial moments of the count probability distribution. These latter can be simply calculated from
the counts in cells, and they estimate the moments of the underlying smooth random �eld in a
consistent and unbiased manner (e.g., Szapudi & Szalay 1993a, hereafter SSI).
As will be shown later, the measurement of the probability distribution of counts in cells in

a galaxy catalog is burdened with errors from various possible sources (if all systematics of the
observations are discounted):

� The usual way of estimating probability distributions consists of building histograms from
�nite number of randomly thrown cells, which introduces measurement errors.

� The survey spans only a �nite portion of the Universe, which introduces �nite volume error,
related to uctuations of the density �eld at scales larger than the sample size.

� The geometry of the survey causes edge e�ects, due to the fact that objects near the edge of
the survey are given less statistical weight than objects far away.

� The galaxies sample the underlying continuous �eld with �nite number of objects, which
creates discreteness errors.

The �rst of these contributions can in principle be eliminated by e�cient computer algorithms
(e.g., Szapudi 1995). The other three are, however, present in all samples even under ideal con-
ditions, because they are simply due to the �niteness of the part of the Universe we have access
to. These errors can be systematic, i.e. the mean can be substantially di�erent from the most
likely value. As will be shown later using a Rayleigh-L�evy hierarchical sample, it is more likely to
underestimate the real moments of the distribution than to overestimate them (see also Colombi,
Bouchet, & Schae�er 1994, hereafter CBSI; Colombi, Bouchet, & Hernquist 1995).
The presentation is organized as follows: in x2, after introducing the general formalism, the

measurement errors are evaluated. x3 describes the framework of the hierarchical model, which
is, together with a locally Poisson approximation, used in x4 to calculate the errors on factorial
moments of order up to four explicitly. In x5, the theoretical results are compared to error estimates
from subsamples extracted from a Raighley-L�evy fractal. The study of the distribution of errors
shows that it can be strongly skewed implying that the errors are systematic. In x6, we summarize
the results and discuss some applications, such as the validity of the Gaussian approximation and
the concept of \number of statistically independent cells". The appendices contain mathematical
derivations which would have interrupted the ow of the main text.

2. General Formalism

In this section, we present a formalism for calculating the theoretically expected errors on es-
timates related to counts in cells measured in a �nite galaxy catalog. Note that the following
formalism can be applied to any random distribution of points windowed by a �nite box.
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Let us imagine that we have a galaxy catalog of volume V , corresponding to length scale L, and
we attempt to measure the probability distribution in cells of volume v, corresponding to length
scale `. The theoretical dispersion of the measurement is partly due to throwing �nite number
of cells and partly reects the �nite nature of the data set. The former e�ect can in principle be
eliminated by throwing a very large (or in�nite) number of cells. The latter e�ect corresponds to
the \cosmic error" in our data set.
Let PN denote the probability of �nding N galaxies in a cell of size `. The factorial moments

(see, e.g., SSI) are de�ned as
Fk = h(N)ki =

X
(N)kPN ; (1)

where (N)k = N(N � 1):::(N � k + 1) is the k-th falling factorial of N . The ensemble average h i
can be evaluated through the probability distribution PN for any 1-point quantity. We introduce
the generating function of the probability distribution

P (x) =
1X
N=0

PNx
N ; (2)

and F (x) = P (x+1) (see, e.g., SSI), the exponential generating function of the factorial moments,
i.e.

F (x) =
X
k�0

Fk
xk

k!
: (3)

Similarly to the above de�nitions we introduce the quantities ~PCN ,
~FCk and the generating functions

~PC(x) and ~FC(x), corresponding respectively to the estimates of PN , Fk, P (x) and F (x) from
randomly throwing C number of cells in the galaxy catalog. Note that this notation refers implicitly
to a particular set of cells; another set of cells can give di�erent results. The equation

~FC(x) = ~PC(x+ 1) (4)

still holds for a given set of cells, so it is quite easy to pass from ~PC(x) to ~FC (x). If Ni denotes
the number of objects in cell \i", then the following equations are true

~PCN =
1

C

CX
i=1

�(Ni = N)

~PC(x) =
X
N�0

xN ~PCN =
1

C

CX
i=1

xNi ; (5)

and �(N = M) is the Kronecker-delta. It is easy to see that the ensemble average of ~PC(x) isD
~PC(x)

E
= P (x), the underlying generating function. The usual measure of error on the counts in

cells and the factorial moments is the dispersion

�
� ~PN

�2
=
DD
( ~PCN )

2

EE
C
�
DD

~PCN

EE2
C�

� ~Fk
�2

=
DD
( ~FCk )

2

EE
C
�
DD

~FCk

EE2
C
; (6)

where the ensemble average is taken �rst over the measurements, and the operator h iC averages
over all possible ways of throwing C cells in the survey volume V . The error generating function
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EC;V (x; y) can be de�ned in such a way that the coe�cients of (xy)N in its series expansion are�
� ~PN

�
2

:

EC;V (x; y) =
X
N;M

hDD
~PCN ~PCM

EE
C
�
DD

~PCN

EE
C

DD
~PCM

EE
C

i
xNyM : (7)

Similarly, the exponential generating function for the errors on factorial moments is

EC;V (x+ 1; y + 1) =
X
N;M

hDD
~FCN ~FCM

EE
C
�
DD

~FCN

EE
C

DD
~FCM

EE
C

i xNyM
N !M !

: (8)

Straightforward calculation yields

EC;V (x; y) =
DD

~PC(x) ~PC(y)
EE

C
�
DD

~PC(x)
EE

C

DD
~PC(y)

EE
C
: (9)

Clearly
DD

~PC(x)
EE

C
= P (x). From equation (5), we have

DD
~PC(x) ~PC(y)

EE
C

=
1

C2

*X
i;j

D
xNiyNj

E+
C

=
1

C2

*
CX
i=1

D
(xy)Ni

E
+

CX
i6=j

D
xNiyNj

E+
C

=
P (xy)

C
+

�
1�

1

C

�D
~P1(x) ~P1(y)

E
; (10)

We introduced the notationD
~P1(x) ~P1(y)

E
�

1

V̂ 2

Z
V̂
dDr1d

Dr2P (x; y); (11)

whereD is the dimension of the survey, P (x; y) is the generating function of the underlying bivariate
probability distribution PNM for two cells located at r1 and r2 with N andM particles respectively.
The integral is performed over the volume V̂ (`) corresponding to all possible positions of cells
entirely included in the survey volume V . Therefore, we have V̂ ' V in the case v � V , and
V̂ � V when the cell size becomes comparable to the survey size. In the second line of equation (10),
the sum is separated into two parts i = j and i 6= j. The second part proves to be the Monte
Carlo realization of equation (11). In what follows, we drop the index 1 from ~P1(x) = ~P (x) for
simplicity. If the volume V tends to in�nity in equation (11), \statistically independent" cells will

dominate the ensemble averaging, therefore
D
~P (x) ~P(y)

E
! P (x)P (y), and the error generating

function is

EC;1(x; y) =
P (xy)� P (x)P (y)

C
: (12)

With the notation
E1;V (x; y) =

D
~P (x) ~P (y)

E
�
D
~P (x)

E D
~P (y)

E
; (13)

we have the equation

EC;V (x; y) =

�
1�

1

C

�
E1;V (x; y) + EC;1(x; y): (14)
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The total error on the measurement of factorial moments can thus be (approximately) disentangled
into two parts: the \cosmic error", E1;V , due to the �niteness of the sample, and the measurement
error EC;1 due to using only C cells.
This intuitive notion was present in the literature before (see, e.g., Hamilton 1985; Politzer &

Preskill 1986; Maurogordato & Lachi�eze-Rey 1987), and materialized in the fuzzy concept of \num-
ber of statistically independent cells". This number, C�, corresponds to the number of sampling
cells needed to extract all (actually most of) the statistically relevant information in the survey.
From equation (14), it is natural to choose C� such that the measurement error and the cosmic
error are of the same order. Note, however, that some residual information still can be extracted
using more cells, since the measurement error can be rendered arbitrarily small. Our choice of C�

qualitatively matches the calculations of Politzer & Preskill (1986) at least for the void probability
distribution function (CBSII). Another simple choice often found in the literature is to cover the
sampled volume uniformly by cells requiring C� ' V=v � CV . We shall see in x 6 that with our
more natural de�nition, C� depends sensitively on the statistical object under study and can be dif-
ferent from CV by several orders of magnitude. Note that in any case, to reduce the errors as much
as possible, it is advisable to use many cells to measure count in cells, so that the measurement
error is negligible compared to the cosmic error.
In the following, we will evaluate E1;V (x; y), the generating function of the cosmic error. Subse-

quently by \errors" we mean cosmic errors since the measurement errors are avoidable in principle.
Following CBSII, the integration in equation (11) is split into two parts according to whether

the cells overlap or not:D
~P (x) ~P (y)

E
=
D
~P (x) ~P (y)

E
overlap

+
D
~P (x) ~P (y)

E
disjoint

(15)

with D
~P (x) ~P (y)

E
overlap

�
1

V̂ 2

Z
r�2`

dDr1d
Dr2P (x; y); (16)

D
~P (x) ~P (y)

E
disjoint

�
1

V̂ 2

Z
r�2`

dDr1d
Dr2P (x; y); (17)

and r = jr1 � r2j. As shown below, the term
D
~P (x) ~P (y)

E
overlap

contains two contributions: the

discreteness e�ect brought by the sampling of the underlying smooth distribution with a �nite
number of points, and the edge e�ect due to the fact the statistical weight given to points decreases

toward the boundary of the catalog (e.g., Ripley 1988). The term
D
~P (x) ~P (y)

E
disjoint

, shown later

to be proportional to the average of the correlation function over V̂ , is due to uctuations of the
underlying random �eld at scales larger than the sample size: it is related to the �nite volume of
the catalog.

The calculation of
D
~P (x) ~P(y)

E
overlap

involves the generating function P (x; y) for overlapping

cells. As proved in Appendix A., P (x; y) can be obtained from the the trivariate probability
generating function of the three non-overlapping cells corresponding to the two original cells as

P (x; y) = P (x; xy; y); (18)

where the parameters xy, x, and y are associated with the cell formed by the overlap area, and the
rest of each cell (I ,H , and J on Fig. 1 respectively).
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According to the previous equations, error calculations on statistics related to counts in cells
in a �nite survey involve generating functions for counts in disjoint cells up to trivariate level.
These functions can be expressed as integrals over the N -point correlation functions �N(r1; : : : ; rN)
(Balian & Schae�er 1989, hereafter BS, SSI, Szapudi & Szalay 1993b, hereafter SSII), i.e.,

P (x) = exp

(
1X
N=1

�NN(x� 1)N

N !vN

Z
v
dDr1 : : :d

DrN�N(r1; : : : ; rN)

)
; (19)

P (x; y) = exp

8<
:
X
N;M

(x� 1)N(y � 1)M �NN+M

N !M !vN+M

Z
v1

dDr1 : : : d
DrN

Z
v2

dDrN+1 : : :d
DrN+M�N+M(r1; : : : ; rN+M)

�
; (20)

and

P (x; y; z) = exp

8<
:
X

N;M;S

(x� 1)N(y � 1)M(z � 1)S �NN+M+S

N !M !S!vN+M+SZ
v1

dDr1 : : : d
DrN

Z
v2

dDrN+1 : : :d
DrN+MZ

v3

dDrN+M+1 : : : d
DrN+M+S�N+M+S(r1; : : : ; rN+M+S)

�
: (21)

The quantity �N �
P
NPN = F1 is the average number of objects per cell. These equations together

with equations (14), (15) and (18) solve the problem in principle: a model for the integrals of the
higher order correlation functions yields the errors on factorial moments as a set of �nite, although
complicated, expressions.

3. Hierarchical Model

In the highly nonlinear regime �2 � 1, an ansatz for the structure of the N -point correlation
functions is the hierarchical model (e.g., Peebles 1980; BS)

�N (r1; : : : ; rN) =

K(N)X
k=1

QNk

BNkX N�1Y
�(rij); (22)

where �(r) � �2(r) = (r=r0)
. Such a model seems to give a reasonably good description of the

statistics measured in the galaxy distribution (e.g., Groth & Peebles 1977; Fry & Peebles 1978;
Sharp, Bonometto, & Lucchin 1984; Szapudi, Szalay & Bosch�an 1992; Meiksin, Szapudi & Szalay
1992; Szapudi et al. 1995) and in N -body simulations (e.g., Bouchet, Schae�er & Davis 1991;
Bouchet & Hernquist 1992; Fry, Mellott & Shandarin 1993; Bromley 1994; Lucchin et al. 1994;
CBSI; CBSII; Colombi, Bouchet, & Hernquist 1995), particularly in the nonlinear regime.
In equation (22), the summation is over all possible NN�2 trees with N vertices. In the sum,

every �(rij) corresponds to an edge rij =j ri � rj j in a tree spanned by r1; : : : ; rN . For every tree,
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there is a product of N � 1 two-point functions, there is a summation over all the BNk labelings of
all the K(N) distinct trees. The scale independent average QN is de�ned as

QN =

K(N)X
k=1

QNkBNkFNk

K(N)X
k=1

BNkFNk

; (23)

where FNk are the form factors associated with the shape of cell of size unity (see Bosch�an, Szapudi
& Szalay 1994 for details)

FNk =
Z
1

d3q1 : : : d
3qN

N�1Y �
j qi � qj j



Z
1

d3p1d
3p2jp1 � p2j

�

��1
: (24)

The above product is running over the N � 1 edges of a tree. Since the number of all tree graphs
with N vertices is NN�2, the generating function takes the following form:

P (x) = exp

(
1X
N=1

(x� 1)N�NQN

)
; (25)

with Q1 � Q2 � 1. The following shorthand notation is used

�N =
NN�2 �NN ��N�1

N !
; (26)

where �� is the average of the two-point correlation function in a cell

�� = v�2
Z
d3r1d

3r2�(r1; r2): (27)

Note that equation (25) is also valid if the N -point correlation functions obey the scaling relation

(BS)
�N(�r1; : : : ; �rN) = ��(N�1)�N (r1; : : : ; rN); (28)

which is more general than the hierarchical model (22).
To obtain workable expressions of the bivariate and trivariate distributions supplementary as-

sumptions are needed. We quote here two approximations, hereafter SS and BeS, worked out
respectively by SSI, SSII and by Bernardeau & Schae�er (1992).
If the distance r between the two cells is large compared to the cell size `, the correlation between

two particles in each cell is � �(r). The integral in equation (20) can be then well approximated
as QN+M�N�MNM� (see Szapudi, Szalay & Bosch�an 1992; Szapudi et al. 1995) up to linear
order in �=��. This was found to be fairly accurate even when the cells are touching. The bivariate
generating function can thus be written, in this framework,

P (x; y) ' P (x)P (y) exp fR(x; y)g

' P (x)P (y) [1 +R(x; y)] + O(�2=��2): (29)

R(x; y) = �

1X
M=1;N=1

(x� 1)M(y � 1)NQN+M�M�NNM:
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This is the SS approximation. A similar expression was developed in SSII for the trivariate gen-
erating function which could be used, in conjunction with the results of the previous section to
evaluate the cosmic errors. However, the locally Poisson approximation developed in the next
section eliminates the need for using it, therefore we do not quote it here explicitly.
The other approach, BeS, consists in using a special (but still quite general) case of the hierarchi-

cal model. It is assumed that QNk, the structure constant associated with a tree topology labelled
with k can be written as

QNk =
1Y
i=2

�
di(k)
i ; (30)

where �i is a weight associated with a vertex with i lines, and di(k) is the number of such vertices
in tree type k. Under this condition, the bivariate generating function is approximated by

P (x; y) ' P (x)P (y)
h
1 + �

�
(1� x) �N ��

	
�
�
(1� y) �N ��

	
�=��2

i
+O(�2=��2); (31)

where

�(s) = s

vuut2
X
N�2

(�s)N�2QN
NN�2(N � 1)

N !
: (32)

Again, this approximation can be generalized to higher order multivariate generating functions (see
Bernardeau & Schae�er 1992).
Although the two approximations SS and BeS appear quite di�erent formally, we shall see in x 6

that in the regimes we considered in this paper they are practically identical.
Note, that the hierarchical model does not hold in the weakly non-linear regime ��2 � 1 (e.g., Fry

1984; Bernardeau 1992), where similar but di�erent formalism has to be applied. We conjecture
that the �nal result will be quite similar (Bernardeau 1994a), although the proof is left for future
work.

4. Calculation of the Cosmic Error

4.1. Contribution from Disjoint Cells

Using the approximations of the previous section, the �nite volume e�ect (second term in eq. [15])
can be computed. D

~P (x) ~P(y)
E
disjoint

' P (x)P (y)
h
1 + ��(L̂)�X(x; y)

i
; (33)

where

�SS(x; y) =
1X

M=1;N=1

(x� 1)M(y � 1)NQN+M�M�NNM: (34)

�BeS(x; y) = �
�
(1� x) �N ��

	
�
�
(1� y) �N ��

	
=��2; (35)

are derived from the two approximations quoted for the bivariate generating function, and ��(L̂) is
given by the following integral

��(L̂) � V̂ �2
Z
r12V̂ ;r22V̂ ;r�2`

dDr1d
Dr2�(r1; r2): (36)
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When v=V � 1, this quantity is approximately the average of the two-point correlation function
over the survey volume:

��(L̂) ' ��(L) � V �2
Z
V
dDr1d

Dr2�(r1; r2); v=V � 1: (37)

4.2. Contribution from Overlapping Cells

The calculation of the �rst term,
D
~P (x) ~P (y)

E
overlap

of equation (15) is burdened with more

di�culty than the second one, because the trivariate generating function depends on the separation
r between the two overlapping cells in a complicated way. The approximations SS and BeS could be
generalized even though the cells are touching if we disregard the fact that the three cells formed by
the overlap and the remaining parts are nonspherical. We leave this rather cumbersome calculation
for subsequent research.
Instead, we worked out a simple approximation, which, as we shall see in x 5 experimentally,

provides su�ciently accurate estimate of �rst integral of equation (15) for practical purposes. This
approximation consists of assuming locally Poisson behavior, i.e., that the correlations inside the
union C[ of two overlapping cells C1 and C2 are smeared out. A natural consequence of this is
that the e�ects of the nonsphericity of C[ can be neglected as well.
Let us denote the volume of C[ by v[ and the radius of the corresponding spherical cell with the

same volume by `[. For three dimensions, we have (CBSII)

4

3
�`3[ = v[ =

4

3
�`3

�
1 + f3

�
r

`

��
; f3( ) =

3

4
 �

1

16
 3; (38)

and the two-dimensional case gives

�`2[ = v[ = �`2
�
1 + f2

�
r

`

��
; f2( ) = 1�

1

�

2
42 arccos  

2
�

s
1�

 2

4
 

3
5 : (39)

According to the locally Poisson ansatz, the probability of an object to be in a portion of
C[ is proportional to the volume of this portion. An object can belong to the overlapping part
C\ � C1 \ C2 or the rest Ci nC\ of one of the cells with probabilities p = [1� fD( )]=[1+ fD( )]
and q = fD( )=[1 + fD( )], respectively. The probability P

S
H;I;J of �nding H , I and J objects in

C1 nC\, C\ and C2 nC\, respectively, under the constraint H+I +J = S (Fig. 1), is a \trinomial"
distribution

PSH;I;J =
S!

H !I !J !
qH+JpI ; (40)

with the following generating function

PS(x; y; z) = (qx+ py + qz)S : (41)

Since the e�ects of the nonsphericity of the volume formed by C1 [ C2 can be neglected under the
locally Poisson assumption, the unconstrained probability PH;I;J of �nding I , J , K respectively in
C1 n C\, C\ and C2 n C\ is simply

PH;I;J = P[H+I+JP
H+I+J
H;I;J ; (42)
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H I J

S=H+I+J

2

N=H+I M=I+J

C C1

Fig. 1.| This is a symbolic drawing of the two overlapping cells C1 and C2. The intersection
C\ � C1 \C2 contains I objects. Each remaining part, C1 nC\ and C2 nC\, respectively, contains
H and J objects. We compute the probability of having N = H + I objects in C1 and M = I + J

objects in C2. The locally Poisson behavior allows us to neglect both the correlations inside the
union C[ � C1 [ C2 of the two cells and the nonsphericity of C[.
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where the probability of �nding S objects in a spherical cell of radius `[ is

P[S � PS j`=`[ : (43)

The trivariate generating function thus can be written as

P (x; z; y) =
X
S

P[S (qx+ py + qz)S = P[(qx+ py + qz): (44)

Then, according to equation (18), the generating function of the bivariate probability PN;M of
�nding N = H + I and M = I + J in the overlapping cells C1 and C2, respectively, is

P [(x; y) = P[ (q(x+ y) + pxy) ; (45)

which takes the following form from equation (25)

P [(x; y) � exp

8<
:
X
N�1

�NQN [1 + fD( )]
�(N�1)

�
3+D�3

D

�

[fD( )(x+ y) + [1� fD( )]xy � 1� fD( )]
N
o
; (46)

where 3 is the slope of the three-dimensional correlation function. In this equation, the e�ect of
higher order clustering is fully contained in the term �NQN , evaluated at the original cell size ` of
C1 and C2.
Changing variables  = r=`, the �rst term of equation (15) becomes

D
~P (x) ~P(y)

E
overlap

'
v

V

Z
2

0

D (D�1)d P [(x; y) (47)

up to leading order in v=V (see Appendix B. for details). This contribution is inversely proportional
to CV = V=v, the number of cells needed to cover the survey volume.

4.3. Theoretical Results: Cosmic Error on Factorial Moments

After carrying out the appropriate subtractions, the previous results can be summarized as

E1;V (x; y) ' ��(L)�X(x; y) +
v

V

�Z
2

0

D (D�1)d P [(x; y)� 2DP (x)P (y)

�
; (48)

to leading order in v=V , where �X(x; y) is given by equations (34) or (35), P
[(x; y) by equation (46)

and P (x) by equation (25). The cosmic error �1;V ~Fk on the factorial moment of order k, can be
computed by expanding the generating function E1;V (x+1; y+1) and then integrating numerically
the function P [. The �nal result can be expressed as a function of the Fj 's with j � 2k.
We computed �1;V ~Fk for k � 4. In the three-dimensional case, D = 3, we considered various

values of :  = 1:8, 1:5, 1:2, and 0:9. In the two-dimensional case, D = 2, we carried out the
calculation only for  = 3 � 1 = 0:8.
Here we present the results explicitly for 3 = 1:8, D = 2; 3 and k � 3. Because of their physical

signi�cance, we disentangled the terms corresponding to the �nite volume, edge and discreteness
e�ects: �

�1;V ~Fk
�
2

=
�
��nite ~Fk

�
2

+
�
�edge ~Fk

�
2

+
�
�discrete ~Fk

�
2

: (49)
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Up to leading order in v=V the cosmic error on the �rst moment (average count) is�
��nite ~F1

�
2

SS;BeS
= �N2��(L); (50)�

�edge ~F1
�
2

D=2
= 6:431 �N2��

v

V
; (51)�

�edge ~F1
�
2

D=3
= 5:508 �N2��

v

V
; (52)�

�discrete ~F1
�2
D=2;3

= �N
v

V
: (53)

For the second factorial moment�
��nite ~F2

�
2

SS
= 4

�
1 + 2 �� Q3 + ��2Q4

�
�N4��(L); (54)�

��nite ~F2
�2
BeS

= 4
�
1 + 2 �� Q3 + ��2Q2

3

�
�N4 ��(L); (55)�

�edge ~F2
�
2

D=2
=

�
11:29 + 3:781 �� + 31:12 ��Q3 + 33:60 ��2Q4

�
�N4 ��

v

V
(56)�

�edge ~F2
�
2

D=3
=

�
17:05 + 3:417 �� + 45:67 ��Q3 + 42:24 ��2Q4

�
�N4 ��

v

V
(57)�

�discrete ~F2
�2
D=2

=
�
0:919 + 4 �N + 0:803 ��+ 10:16 �N �� + 8:642 �N2 ��2Q3

�
�N2
v

V
(58)�

�discrete ~F2
�2
D=3

=
�
0:648 + 4 �N + 0:502 ��+ 8:871 �N �� + 6:598 �N2 ��2Q3

�
�N2
v

V
: (59)

Finally, for the third factorial moment�
��nite ~F3

�2
SS

= 9
�
1 + 2 �� + ��2 + 4 �� Q3 + 4 ��2Q3+

10 ��2Q4 + 6 ��3Q4 + 12 ��3Q5 + 9 ��4Q6

�
�N6 ��(L); (60)�

��nite ~F3
�2
BeS

= 9
�
1 + 2 �� + ��2 + 4 �� Q3 + 4 ��2Q3 + 2 ��2Q3

2 � 2 ��3Q3
2�

4 ��3Q3
3 + ��4Q3

4 + 8 ��2Q4 + 8 ��3Q4 + 16 ��3Q3Q4 �

8 ��4Q3
2Q4 + 16 ��4Q4

2
�
�N6 ��(L); (61)�

�edge ~F3
�
2

D=2
=

�
24:23 + 80:71 ��+ 31:50 ��2+ 131:6 ��Q3 + 306:0 ��2Q3 + 117:6 ��3Q3

2+

504:0 ��2Q4 + 409:6 ��3Q4 + 1280 ��3Q5 + 1805 ��4Q6

�
�N6 ��

v

V
; (62)�

�edge ~F3
�2
D=3

=
�
34:62 + 99:26 ��+ 39:60 ��2+ 180:3 ��Q3 + 331:1 ��2Q3 + 93:50 ��3Q3

2+

633:5 ��2Q4 + 441:3 ��3Q4 + 1379 ��3Q5 + 1668 ��4Q6

�
�N6 ��

v

V
; (63)�

�discrete ~F3
�2
D=2

=
�
1:593 + 8:273 �N + 9: �N2 + 4:263 ��+ 43:37 �N �� + 76:22 �N2 ��+

19:01 �N ��2 + 97:22 �N2 ��2 + 3:814 ��2Q3 + 76:06 �N ��2Q3 +

194:4 �N2 ��2Q3 + 166:0 �N2 ��3Q3 + 89:22 �N ��3Q4 + 442:7 �N2 ��3Q4 +

592:9 �N2 ��4Q5

�
�N3

v

V
; (64)�

�discrete ~F3
�2
D=3

=
�
0:879 + 5:829 �N + 9: �N2 + 2:116 ��+ 27:13 �N �� + 66:53 �N2 ��+
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10:59 �N ��2 + 74:23 �N2 ��2 + 1:709 ��2Q3 + 42:37 �N ��2Q3 +

148:5 �N2 ��2Q3 + 111:2 �N2 ��3Q3 + 44:40 �N ��3Q4 + 296:4 �N2 ��3Q4 +

349:3 �N2 ��4Q5

�
�N3

v

V
: (65)

Let us discuss the signi�cance and meaning of the di�erent terms in these equations.
�
��nite ~Fk

�
2

X
,

with X=SS or BeS, is proportional to ��(L) (and formally independent of the spatial dimension D).
It corresponds to the �nite volume e�ect due to the uctuations of the underlying random �eld at
scales larger than the sample size. The relative �nite volume error ��nite ~Fk=Fk is independent of
�N , or, in other words, independent of the number of objects Npar in the catalog, in accordance
with intuition. The two approximations SS and BeS, although quite di�erent formally, gave similar
result in all practical cases studied. To illustrate this point, we computed the expected �nite volume
errors in these two approximations for a three-dimensional hierarchical sample S with power law
correlation function �� = (`=`0)

�S , S = 1:8, and `0 = L=20. For the amplitude of higher order
correlations we take the QN 's measured by Gazta~naga (1994) in the APM survey (corrected to
have three-dimensional statistics, see also Szapudi et al. 1995)

Q3 = 1:35; Q4 = 2:33; Q5 = 4:02; Q6 = 6:7; Q7 = 10; Q8 = 12: (66)

Figure 2 displays the quantity ��nite ~Fk=Fk as a function of `=L. Each panel corresponds to a
given order k. The di�erence between the two approximations is mostly negligible, at most 20%.
��nite ~Fk=Fk increases with k, as expected, and it exhibits two plateaux: one in the weakly nonlinear
regime ��2 � 1, and one in the highly nonlinear regime ��2 � 1, as can be easily inferred from
equations (50), (54), (55), (60) and (61).

The term
�
�edge ~Fk

�2
corresponds to the edge e�ects. It is due to the fact that the statistical

weight given to objects near the edge is smaller than far away from it. It can be clearly disentangled

from the discreteness e�ect term
�
�discrete ~Fk

�2
corresponding to the \shot noise" introduced by

the �nite number of objects in the catalog. Indeed, in the continuous limit ( �N ! 1) the relative
error �discrete ~Fk=Fk vanishes, whereas the relative error �edge ~Fk=Fk is independent on �N , and

proportional to
q
��v=V up to leading order in v=V . This also suggests that edge e�ects are non-

existent (or very weak) for a Poisson (or a weakly clustered) sample, con�rming the intuition that
geometry is unimportant for (nearly) Poisson statistics. To illustrate these points, Figure 3 displays
the quantities �edge ~Fk=Fk and �

discrete ~Fk=Fk for our reference catalog S, assuming various values of
Npar = 500, 5000, 50000. As expected, discreteness e�ects are larger at smaller scales, particularly
when the number of objects Npar is small, while edge e�ects increase with `.
The formal expression for the edge and discreteness e�ects is

�
�X ~Fk

�2
=
X

ch;i;j1;:::;j2N
�Nh ��iQj1

1
: : :Q

j2N
2N

v

V
; (67)

with X=edge or X=discrete. The numerical value of the coe�cients ch;i;j1;:::;j2N is fairly insen-
sitive to changes of 3 in the regime consistent with the observations (moreover the two and
three-dimensional coe�cients are quite similar), therefore the quoted equations constitute good
approximations even for 3 6= 1:8. To show this, we computed ch;i;j1;:::;j2N for D = 3, k � 4,

and for various values of  = 1:8, 1:5, 1:2 and 0:9. The corresponding errors
�
�overlap ~Fk=Fk

�
2

=

14



Fig. 2.| The relative �nite volume error ��nite ~Fk=Fk brought by uctuations of the underlying
random �eld at scales larger than the sample size L � V 1=3 is plotted as a function of cell size `, for
our reference catalog S (see text). Each panel corresponds to a given value of k. The dotted-dashed
and dashed curves correspond respectively to the approximations SS and BeS discussed in x 3. For
k = 1, both approximations give the same results. For k � 2, they di�er only by a small amount.
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Fig. 3.| The error �edge ~Fk=Fk brought by edge e�ects (long dashes) and the error �discrete ~Fk=Fk
due to the �nite number of objects in the catalog (dots-long dashes) are displayed as functions
of cell size `, for our reference set S (see text). The number of objects in S is assumed to be
Npar = 500, 5000 and 50000. When Npar increases, �discrete ~Fk=Fk decreases whereas �edge ~Fk=Fk
remains constant.
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�
�edge ~Fk=Fk

�2
+
�
�discrete ~Fk=Fk

�2
for our reference set S, assuming that Npar = 5000, are dis-

played on Figure 4 as functions of `=L. Each panel corresponds to a given value of the order k.
Note that on Figure 4, the slope of the correlation function, S , used to evaluate ��, is held �xed.

5. Example: a Rayleigh-L�evy Fractal

In the previous section, two important hypotheses made the calculation of the errors possible:
hierarchical model and locally Poisson behavior. The �rst assumption is supported by the statistical
properties of the galaxy distribution and the measurements in N -body simulations. Here, to justify
the second ansatz, we estimate experimentally the errors on measurements of factorial moments in
subsamples of a homogeneous Rayleigh-L�evy fractal described in x 5.1, and compare the results to
our theoretical predictions in x 5.2. Indeed, such a control sample is strongly clustered, thus far
from showing a locally Poisson behavior. Another signi�cant point, discussed in the introduction,
is to examine the distribution of errors rather than just the dispersion of the measurements. Since
we have access only to a unique part of the Universe, it is important to know to what extent the
cosmic errors are systematic. To study this question analytically with the same degree of generality
we used until now would be rather di�cult. Instead, we measure in x 5.3 the distribution of errors
in our control sample.

5.1. The sample

The sample F , of Npar = 1283 points, was generated in a three dimensional unit torus (a
cube of size LF � 1 with periodic boundary conditions) using 1024 Rayleigh-L�evy random walks
Wi � fWi;j; j = 1; 2048g. Each walk starts from a point Wi;1 at a random position. In a given
walk Wi, the next point Wi;j+1 is chosen at random direction and at distance r from Wi;j drawn
from the following distribution

p(r > `) = (`p=`)
�; ` � `p;

p(r > `) = 1; ` < `p:
(68)

The statistical properties of a Rayleigh-L�evy fractal can be fully calculated once Npar, �, and the
percolation length `p are known, in particular, the two-point correlation function �(r) (Mandelbrot
1975; Peebles 1980), hence �� (see details in CBSII). Here we chose `p = 4:38 10�4 and � = 1:2 so

that �� =
�
`
`0

��F
with `0 = LF=40 and F = 1:8 = 3� �. It can be easily shown that such a fractal

obeys the special hierarchical model of equation (22) (see, e.g., Hamilton & Gott 1988; Bernardeau
& Schae�er 1992; CBSII; and eq. [30]). The approximation BeS for the �nite volume e�ect error is
thus exact in this particular case (up to leading order in v=V ). To compute the errors on Fk up to
k = 4, we need the values of QN up to N = 8. We have approximately QN ' 21�NN !=NN�2 with
some small correction from the e�ect of the smoothing over the cell. Following CBSII (see their
Table 1), we have, with this correction,

Q3 ' 0:514; Q4 ' 0:200; Q5 ' 0:0662; Q6 ' 0:0199; Q7 ' 0:0056; Q8 ' 0:0015: (69)

Figure 5 displays a thin slice of F (LF=50 thick), showing the clumpy nature of our fractal, which
is thus far from being locally Poisson.
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Fig. 4.| This �gure displays the dependence of the \overlapping" error,
�
�overlap ~Fk=Fk

�
2

=�
�edge ~Fk=Fk

�
2

+
�
�discrete ~Fk=Fk

�
2

, on the value of  used to compute the coe�cients ch;i;j1;:::;j2N

in equation (67). The quantity �overlap ~Fk=Fk is plotted as a function of cell size, for  = 1:8,
1:5, 1:2 and 0:9 and for our reference sample S (without changing S), assuming that it contains
Npar = 5000 objects. The value of �overlap ~Fk=Fk is increasing with 1=.
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Fig. 5.| A thin slice (LF=50 thick) of our Rayleigh-L�evy fractal F is shown (see text).

5.2. Comparison of the Theoretical Predictions with Numerical Results

From F , we extracted Nsub = 1000 cubical subsamples F i
sub

of size L = LF=4. The position
of each subsample was choosen randomly. We also randomly diluted the subsamples by a factor
��1 = 64. In other words, the probability that a particle in the volume intersecting F i

sub
was

selected is p = �. In the following, if A is a statistical quantity, ~Ai is its measurement in F i
sub

,

and
D
~A
E
i
� N�1

sub

P
i
~Ai is the average of ~Ai over the Nsub realizations. If ~N i

par is the number of

particles per subsample, its average is thus
D
~Npar

E
i
' �Npar = 512. In each subsample we measured

the factorial moments ~F ik, using a large number C � 1283 of cells so that the measurement error
�C;1 ~Fk was negligible. The (biased) experimental estimate of the error on ~F ik is thus

�
� ~Fk

�
2

=

��
� ~Fk

�
2
�
i

(70)

with
� ~F ik = ~F ik �

D
~Fk
E
i
: (71)

Similarly to the previous considerations, there is measurement error on the error due the �nite
number of subsamples extracted from F , and there is cosmic error on the error due to the �nite
size of F , its geometry and the �nite number of objects it contains. The former can be estimated
by straightforward error propagation, the latter is rather complicated because it depends on, e.g.,
16th order quantities for the 4th order cosmic error on the error.
Figure 6 displays the measured value of � ~Fk=Fk (circles) versus the theoretical predictions (solid

curves), which use the approximation BeS to compute the �nite volume error ��nite ~Fk=Fk (short
dashes). Note that the SS approximation would give similar results. The edge e�ect contribution
�edge ~Fk=Fk (long dashes) and the discreteness contribution �discrete ~Fk=Fk (dot-long dashes) are
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Fig. 6.| This �gure shows the measured value of the error � ~Fk=Fk on the measurement of Fk in
the fractal subsamples F i

sub
as a function of scale (dots), and our theoretical prediction (continuous

curve). Each panel corresponds to a value of k. The BeS approximation was used to compute
the �nite volume error ��nite ~Fk=Fk (short dashes). The edge e�ect contribution �edge ~Fk=Fk (long
dashes) and the discreteness contribution �discrete ~Fk=Fk (dot-long dashes) are also displayed.
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also displayed. There are errorbars on the dots, when su�ciently large to be visible. They corre-
spond to the measurement error on the error. Note the excellent agreement of our predictions with

the numerical experiment, which also shows that the cosmic error on the error problem mentioned
above is well controlled in our experiment. This particular example also illustrates how the shot
noise contribution �discrete ~Fk=Fk to the error increases with k at small scales. The edge e�ect
contribution is negligible at small ` but always dominates at large scales, although the steadier
�nite volume e�ect contribution is of the same order in this regime.

5.3. Distribution of the Errors

Let us imagine now that we have access to only one subsample F i
sub

and measure ~F ik . Is it more
likely to under- or overestimate the real value of Fk? To answer this question, we measured the
probability distribution function �(� ~F ik) of the errors. The result is displayed in Figure 7 for two
scales, L=64 (four top panels, each one corresponding to a given value of k) and L=4 (four bottom
panels). On each panel, the errorbars on the measurements reect the �nite number of subsamples,

and the continuous curve corresponds to a Gaussian with average zero and variance
�
� ~Fk

�2
. From

Figure 7, the distribution of the errors is increasingly skewed with both increasing k and scale
compared to a Gaussian. In particular, the maximum of function �(� ~F ik) lies at a negative value of
�F ik, which indicates that it is likely to underestimate the real value of Fk, especially if the order k
and/or the cell size ` is large. This systematic e�ect was already pointed out by CBSI and CBSII
who proposed a method to correct for it in some particular regimes using some assumptions on the
asymptotic properties of the probability distribution.

6. Discussion

In this paper we calculated the theoretical error on statistics related to counts in cells in a �nite
galaxy catalog. We identi�ed the di�erent contributions to the total theoretical error (the system-
atics of the observations are disregarded): the measurement error, due to the �nite number of cells
thrown to estimate the count probabilities (this in principle can be eliminated with the algorithm of
Szapudi 1995), and the cosmic error, inherent to any �nite catalog. The cosmic error itself has three
contributions: the discreteness e�ect arising from sampling the underlying continuous random �eld
with �nite number of points, the edge e�ect caused by the lesser statistical weight given to objects
near the boundary of the survey, and the �nite volume e�ect, from uctuations of the underlying
random �eld at scales larger than the sample size. First, we presented the general mathematical
formulation of the problem establishing a �rm groundwork for subsequent applications, and solving
the practical measurement error problem. For the cosmic error, in the framework of the hierarchical
tree assumption, we have found a good approximation using a locally Poisson ansatz. The results,
in excellent agreement with our control measurements performed on a Rayleigh-L�evy hierarchical
sample, give a simple and useful way of estimating the expected errors for a galaxy survey with
prescribed properties. Measurements of the distribution of the errors on the same Rayleigh-L�evy
fractal showed that the cosmic errors tend to be systematic, i.e., it is more likely to underestimate

the true value of Fk than to overestimate it, as already pointed out by CBSI.
To further illustrate our results, we discuss here two important subjects. The �rst one concerns

the dependence of the errors on the clustering properties of the underlying distribution. In partic-
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Fig. 7.| The probability distribution function �(� ~F ik) of the errors as a function of � ~F ik=�
~Fk,

measured in our 1000 subsamples F i
sub

. The four upper panels, each one for a given k, correspond
to cell size ` = L=64. The four lower panels correspond to ` = L=4. On each panel, a Gaussian

with average zero and with variance
�
� ~Fk

�
2

is displayed.

22



ular, is it fair to assume Gaussian behavior to compute the errors on statistics related to counts
in cells? The second subject is the previously mentioned (x 2) concept of \number of statisti-
cally independent cells". Further applications, such as reanalyses of the cosmic error on counts in
cells measured in galaxy catalogs, or sampling strategies for galaxy surveys (Kaiser 1986) will be
discussed elsewhere (Colombi, Szapudi & Szalay 1995). Note also, as mentioned in x 3, that the
hierarchical model is not expected to be valid in the weakly nonlinear regime, although it should
be a good approximation for the calculation of the errors (Bernardeau 1994a). More detailed
investigations of the weakly nonlinear regime are left for future work.
In what follows, the approximation SS discussed in x 3 was used to compute the �nite volume

contribution to the error.
Figure 8 illustrates the di�erence between Gaussian and full hierarchical assumptions for error

calculations by displaying the expected cosmic error on the measurement of Fk for samples of
volume V = L3, correlation function �� = (`=`0)

� with  = 1:8 and `0 = L=20. All these �ctive
samples have the same number of objects Npar = 5000, however, the higher order statistics is
varied. Each panel corresponds to a given value of k. The long dashes assume Gaussian underlying
statistics for the calculation of Fk and the calculation of the error. For k � 2, The (upper) short
dashes, dots, and continuous curve assume that the hierarchy of QN 's is given by perturbation
theory predictions (see, e.g., Bernardeau 1994b) for an initial power spectrum



j�kj

2
�
/ kn with

n = �2;�1; 0, respectively. For k � 3, the lower short dashes, dots and continuous curve assume
the same hierarchy of QN 's for the calculation of Fk, but the errors are computed from Gaussian
statistics. In the case k = 2, such an assumption would lead to the long dashes, whatever the values
of the QN 's. In the case k = 1, the error depends only on statistics up to second order, for which all
the models under consideration are equivalent. These plots clearly show a strong dependence of the
cosmic error on the underlying clustering properties of the system. Moreover, assuming Gaussian
statistics to compute the errors seems unreasonable: the errors can be severely underestimated,
except, as expected, in weakly nonlinear regime.
Let us turn to a widely used but seldom explained concept: the number of statistically indepen-

dent cells. We de�ned it in x 2 as the number of cells C� needed to sample the catalog so that the
measurement error equals the cosmic error. This de�nition ensures that most of the statistically
relevant information is extracted. In that sense, these cells can be considered as \statistically in-
dependent". However, there must remain residual information in the survey obtainable via more
sampling cells, since the overall error can be decreased by another factor of two. This illustrates
the level of arbitrariness in the concept of \number of statistically independent cells" for a sample
of �nite volume. Another popular but certainly erroneous choice is C� = CV = V=v, the number
of cells needed to cover the sample volume V . To compare this choice with our more natural de�-
nition, Figure 9 displays the quantity C�=CV for our reference sample S (see x 4.3), assuming that
it contains Npar = 5000 objects (left panel) and in the continuous limit Npar = 1 (right panel).
It has been computed from the errors on Fk , with k = 1 (solid curves), 2 (dots), 3 (short dashes)
and 4 (long dashes). First thing to notice is that the number of \statistically independent cells" is
not universal: C� depends on the statistical object under study. In our example it increases with
k. It is generally di�erent from CV by several orders of magnitude. Note that C� is smaller in the
continuous limit than for �nite Npar, contrarily to the expectation motivated by the fact that the
shot noise tends to increase the cosmic errors. Another shot noise contribution to the measurement
error, however, increases when Npar is small, thus explaining this counterintuitive e�ect. As already
discussed in x 2, throwing a number of sampling cells C � C� would decrease the overall errors by
a factor two. Moreover C� highly depends on the statistical object under study, so we endorse the
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Fig. 8.| This �gure displays the relative cosmic error on the measured factorial moment Fk
(k = 1; : : : ; 4), as a function of the cell size ` for a catalog of volume V = L3, assuming that it
contains Npar = 5000 objects and its correlation function is �� = (`=`0)�1:8 with `0 = L=20. Each
panel corresponds to a di�erent value of k. The long dashes assume underlying Gaussian statistics.
For k � 2, the upper dots, short dashes and continuous curves assume that higher order statistics is
given by perturbation theory predictions for scale invariant initial power-spectra of indexes n = �2,
-1, 0 respectively. For k � 3, there are lower dots, short dashes and continuous curve. In that case,
that the error � ~Fk has been calculated assuming Gaussian statistics, but the Fk remain unchanged.
The vertical dotted line on each panel marks the value of the correlation length `0.
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Fig. 9.| The \number of statistically independent cells" C� for the factorial moments of order k.
It is divided by the number of cells needed to cover the catalog CV = V=v and plotted as a function
of cell size for our reference catalog S. The left panel assumes that it contains Npar = 5000 objects,
while the right panel corresponds to the continuous limit. The solid curve, dots, short dashes and
long dashes correspond respectively to k = 1, 2, 3 and 4.

use of as many cells as possible for counts in cells measurements, or to use an algorithm which is
equivalent to throwing in�nite number of cells (Szapudi 1995).
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Appendix

A. Generating Function for Overlapping Cells

In this Appendix, we show how to relate the bivariate generating function of overlapping cells to
a trivariate generating function. Two overlapping cells can be imagined as three non-overlapping
(touching) cells (see Fig. 1). Knowing the trivariate probability distribution PH;I;J of these three
cells, it is simple to express the bivariate probability distribution for the two original cells

PM;N =
X
H;I;J

�(H + I = N)�(I + J =M)PH;I;J ; (A1)

where I is the number count in the overlap area. The bivariate generating function can be expressed
in terms of the trivariate generating function

P (x; y) =
X
M;N

PM;Nx
NyM = P (x; xy; y); (A2)
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where
P (x; y; z) =

X
H;I;J

PH;I;Jx
HyIzJ ; (A3)

is the generating function corresponding to the tree cells. Alternatively, the path integral formalism
of SSI (see their eq. [5.5]) gives the same result with the following special source (see also BS)

J�(x) = W1n2;R(x)z1 +W1\2;R(x)z1z2 +W2n1;R(x)z2;

Wi;R(x) =

(
1 if x 2 Vi
0 if x 62 Vi

;
(A4)

where the W 's are the characteristic functions of the union and the set theoretical di�erences of
the two cells.
The generalization of the above formulae forN -variate generating functions with possible overlaps

is a trivial, although tedious exercise.

B. Contribution of the Error from Overlapping Cells

In this Appendix, we improve the approximation of equation (47) in three dimensions (D = 3).
For simplicity, we assume that the survey is spherical of radius R and that the origin of the
coordinates is the center of the survey. The possible positions of cells of radius ` contained in the
survey are thus r � R̂ � R� `. Introducing

 ̂ � R̂=`;  1 � r1=`;  � jr1 � r2j=`; (B5)

and using spherical coordinates, we have,

D
~P (x) ~P (y)

E
overlap

=
v2

V̂ 2

Z
0� 1� ̂

3 2

1d 1(Z
0� �min( ̂� 1;2)

3 2d +

Z
 ̂� 1� �min( ̂;2)

"
 ̂2 � ( �  1)2

4  1

#
3 2d 

)
P [(x; y): (B6)

This two-dimensional integral could be easily evaluated numerically, in case more than leading
order accuracy in v=V is needed to estimate the errors, particularly edge e�ects.
For the sake of comparison, we compute explicitly the dispersion on the average count using the

above (more accurate) expression.

D
�N2
E
overlap

=
D
F 2

1

E
overlap

=
@

@x

@

@y

D
~P (x+ 1) ~P (y + 1)

E
x=y=0

; (B7)

where we dropped the obvious \overlap" index on the right hand side. We consider the particular
case V � 27v ( ̂ � 2) and  = 3=2. The result is

D
�N2
E
overlap

'
v

V̂

("
2

21

v

V̂
�
27

35

�
v

V̂

�1=3
+ 1

#
�N
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+

"
2
v

V̂
� 9

�
v

V̂

�
1=3

+ 8

#
�N2

+

"
1:432

v

V̂
� 6:516

�
v

V̂

�
1=3

+ 5:860

#
�N2��

)
: (B8)

This equation is exact for a Poisson sample if we set �� � 0. The approximation of equation (47)
leads to D

�N2

E
overlap

'
v

V

h
�N + 8 �N2 + 5:860 �N2��

i
; (B9)

showing that it is indeed correct up to the leading order in v=V . Note that for v=V = 1=27,
equation (B8) gives D

�N2
E
overlap

= 0:078 �N + 0:469 �N2+ 0:348 �N2��; (B10)

while under the same assumption (B9) yields

D
�N2

E
overlap

' 0:037 �N + 0:296 �N2+ 0:217 �N2��: (B11)

The di�erence is less than a factor of 2, showing that the leading order in v=V is still a reasonable
approximation.
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